
The Nigerian Gas Flare Tracker

Alberto González Palomo

alberto@sentido-labs.com

Revision: 1.1 Date: 2019-07-03

mailto:alberto@sentido-labs.com

Contents

Contents i

1 Introduction 1
1.1 Remote pyrometry, detecting fire from orbit . 3
1.2 2018 edition . 4
1.3 Front-end features . 4
1.4 Back-end features . 4

2 User interface 5
2.1 Filter . 6
2.2 Map view . 7
2.3 Detail view . 8

3 Server API 9
3.1 Endpoints . 9

4 Installation 10
4.1 Database set-up . 10

5 Configuration 11

6 Developing the server API 12
6.1 CORS settings . 12
6.2 New HTTP endpoints with the PostgreSQL adaptor 12

7 Maintenance 14
7.1 Importing VIIRS data . 14
7.2 Updating the database . 16

Bibliography 18

©2018,2019 Alberto González Palomo https://sentido-labs.com

Author: Alberto González Palomo

The author grants Stakeholder Democracy Network Ltd a sublicensable, assignable, royalty free, including the rights to create

and distribute derivative works, non-exclusive license to this document. This license does not cover any trademarks or third

party content.

Sentido® is a registered trademark of Alberto González Palomo

Suomi NPP satellite diagram modified by Alberto González Palomo from NASA’s Broschure for the NPP mission:

https://www.nasa.gov/mission_pages/NPP/main/

Title page font: Ubuntu® by Canonical Ltd.

i

https://sentido-labs.com
https://www.nasa.gov/mission_pages/NPP/main/
https://design.ubuntu.com/font/
https://canonical.com/

Introduction

The Nigerian Gas Flare Tracker is a web application that identifies gas flares in Nigeria, and estimates
the energy wasted, value of gas burnt, missing fees (penalties for gas flaring are seldom enforced),
potential for electricity generation, and CO2 emissions.

This 2018 edition is the successor of the first Nigerian Gas Flare Tracker (GFT) I made in 2014,
which was an adaptation of the Nigerian Oil Spill Monitor (OSM). The following was part of my e-mail
to Stakeholder Democracy Network (SDN) and the Nigerian National Oil Spill Detection and Response
Agency (NOSDRA) on 2014-01-13:

I have ideas for improvements in the application that I want for myself, and I’ll be
glad to add them to SDN’s version if they consider them useful. One that I just did
and is relevant for this project is a new Flares data layer. There was a previous Gas
Flares layer that only had locations of supposed gas flares but no additional details: http:
//a.tiles.mapbox.com/v3/nigeriaoil.gas-flare-locations/page.html

The new one is built from the satellite measurements conducted by the NOAA/NASA
mission VIIRS Nightfire, and includes a link to an academic paper where they detail the
exact analysis process used to produce that data. You can see that layer in the application:

https://oilspillmonitor.ng/

On the right side, in the list of overlay layers, find the one called “Flares” and click
on it. After a few seconds you’ll see a collection of circles of different colours and sizes
added to the map. (It gets quite crowded but you can click on “Oil company/Third party/
Pending visit” to hide those other layers) Clicking on any of those new circles will bring up
an “information balloon” like that in the Oil blocks layer, with the flare temperature and
other data on it, including a CO2 emissions estimation if available. The colours correspond
to temperature ranges: red and yellow are very hot flames, typical of gas flares. Blue and
purple are colder, which suggests that they are wood (or other biomass) burning, with
green somewhere in between. The size indicates the total heat produced. If you zoom out a
bit, you’ll see that the flares in the delta are mostly high-temperature flames, while those
further north are lower temperature. Keep in mind that these are measurements from a
satellite so there is some margin for error, but the general picture is quite clear. That layer
includes only flares detected during the night of the 6th of January of 2014. The satellite
makes one pass over the whole world each night and the results are published the next day.

In June 2014 SDN went ahead with a project to locate flare sites and estimate how much it was
costing the Nigerian people in wasted energy, missing income and fees, and how much CO2 was being
dumped into the atmosphere.

Their initial plan was to enter flare sites manually, starting from the satellite measurements as a
guide on where to look for flares in the Google Maps base layer (“satellite view”) which at the time was
the most detailed freely-available aerial photography. This turned out to require much more manual
work than they expected.

What I did then was to process the data off-line to locate likely flare sites. The satellite measurements
do not track individual flares over time: due to small inaccuracies in geolocation (see “VIIRS Geolocation
Accuracy Monitoring”) the coordinates of the measurements for a same flare varied some times more
than one Km between different nights.

The result totals were below the official figures, which is probably because the usual cloud cover on
the Niger Delta obscures the flares for most of the year. To obtain yearly totals it might be better to use
the approach from “Remote Mapping of Gas Flares in the Niger Delta with MODIS imagery” [ABW]:
using the measurements during the Harmattan weather period when that dry wind blows from the
Sahara (roughly December to February), and extrapolating to the whole year.

1

https://sentido-labs.com/en/portfolio/#Nigerian-Oil-Spill-Monitor
http://stakeholderdemocracy.org/
https://nosdra.gov.ng
https://nosdra.gov.ng
http://a.tiles.mapbox.com/v3/nigeriaoil.gas-flare-locations/page.html
http://a.tiles.mapbox.com/v3/nigeriaoil.gas-flare-locations/page.html
https://oilspillmonitor.ng/
https://ncc.nesdis.noaa.gov/VIIRS/VIIRSGeoErrors.php
https://ncc.nesdis.noaa.gov/VIIRS/VIIRSGeoErrors.php
https://en.wikipedia.org/wiki/Harmattan

2

Figure 1.1: Flare site composed of 307 measurements: the red circle is the estimated flare site location,
and the blue lines connect each measurement from one day to the next. (GFT 2014)

Figure 1.2: Clicking on the sample count (“Combined report,
contains 307 sample points”) expands the detail view (left
pane) to show each sample point in full detail. (GFT 2014)

My algorithm started by taking the
measurements from the first day as
initial flare sites. Then for each next
day it found the distances between the
new measurements and the flare sites
and computed their statistical mode
(smoothed by bucketing) for each axis
(∆x,∆y), and for each measurement
computed the corrected coordinates ap-
plying (-∆x,-∆y) and assigned it to the
closest flare site if found within a radius
of 0.0445 degrees (<5 Km, guessed
by looking at a distance distribution
graph), or stored it as a new flare site
otherwise. Finally, the position of each
flare site was the average of the posi-
tions of the measurements assigned to
it, and it did another pass using these
flare sites as initial to reduce the influ-
ence of outliers that might happen to
be at the beginning of the list of mea-
surements, the ones used as initial in
the first pass.

3

1.1 Remote pyrometry, detecting fire from orbit

The Gas Flare Tracker depends completely on the remote pyrometry measurements provided openly by
the Earth Observation Group of the United States National Oceanic and Atmospheric Administration,
NOAA. So much so, that in early 2019 when NOAA’s web service was down during the US Government
shutdown, the application stopped being able to offer current data. We kept serving the historic data
we had until then, of course.

Figure 1.3: The Suomi NPP satellite. The images taken each night by its VIIRS instrument are processed
by NOAA’s Earth Observation Group into their VIIRS Nightfire [EZHB13] product that provides us with
the daily fire location and temperature information. On 2017-11-18 its successor JPSS-1/NOAA-20
joined it with an improved VIIRS orbiting 50 minutes ahead. Image from NASA’s Press Kit, modified.

In July 2014 while checking the calculations by myself I found a consistent 1.73 % discrepancy in
the CO2 emissions. In one example, a Methane_EQ of 0.681103 m3/s gave me 1225.68495 g/s of CO2
(Methane_EQ×656×2.74323), while NOAA’s value was 1247.34 g/s.

• First we need the combusion reaction of methane: CH4 + 2 O2 → CO2 + 2 H2O
• Now their weight ratio, from their molecular weights:

– CH4 = 12.011 + 4×1.00794 = 16.04276
– CO2 = 12.011 + 2×15.999 = 44.009

Weight ratio CO2/CH4 = 44.009/16.04276 = 2.7432312145790374 ' 2.74323
Therefore, the amount of CO2 produced by combustion of one gram of CH4 is 2.74323 g

• Given that the density of methane is 0.656 g/L at 25°C, 1 atm:
1L = 10E-3 m3 ⇒ 0.656 g/L = 656 g/m3

I wrote to their Defense Meteorological Satellite Program detailing my steps and they replied with
a full account showing that the difference came from me using the density of methane at 25°C instead
of 20°C as they did.

I keep being impressed by NOAA’s and NASA’s openness. That they provide unfettered access to
such an amount and quality of data sources and even their own time to answer questions for the benefit
of foreign citizens (Spanish, British, and Nigerian) stands in contrast with the attitude of other agencies
like the European Space Agency1 (ESA) and the German Aerospace Center2 (Deutsches Zentrum für
Luft- und Raumfart, DLR). I must admit that the USA does such things better.

1ESA “How to access ESA data”, requires registration and accepting being tracked by Google.
2DLR “Data Access and Products”, requires registration and approval by them of your usage.

https://en.wikipedia.org/wiki/Pyrometry
https://www.ngdc.noaa.gov/eog/
https://www.noaa.gov/
https://www.noaa.gov/
https://en.wikipedia.org/wiki/2018%E2%80%9319_United_States_federal_government_shutdown
https://en.wikipedia.org/wiki/2018%E2%80%9319_United_States_federal_government_shutdown
https://ngdc.noaa.gov/eog/viirs/download_viirs_fire.html
https://www.usa.gov/government-works
https://earth.esa.int/web/guest/data-access/how-to-access-esa-data
https://www.dlr.de/firebird/en/desktopdefault.aspx/tabid-9090/17974_read-42458/

4

1.2 2018 edition

This 2018 edition is a new application designed from the ground up for this purpose. It still uses the
remote pyrometry data provided by the VIIRS instrument (§ 1.1 Remote pyrometry, detecting fire from
orbit) with a new clustering and calibration algorithm by Rory Hodgson [Hod18].

The database management system is a standard SQL Relational Data Base Management System
(RDBMS) with extensions for Geographical Information Data (GIS) management: PostgreSQL with the
PostGIS extension.

The application front-end that runs on the server is, like in the OSM, written in Javascript with
HTML, CSS and SVG. The map component is Leaflet, and graphs are built on Charts.js.

To bridge the two, there is a thin adapter (see § 6 Developing the server API) running on the
Apache web server, written in PHP. The reason for choosing PHP for the HTTP API end-points (the
URLs used by the front-end to fetch data) is to keep maintenance as low as possible: PHP is already
pre-installed practically everywhere, and each request is served by a different instance of the interpreter
that disappears after delivering the response. This means we do not have to install and update it, and
there is no server process that has to be kept running.

Figure 1.4: Two designs for web applications: a long-running process that keeps the data loaded, and
short-running processes (here PHP programs) that start, serve one request, and stop.

In contrast, a long-running process would be more efficient as it could share resources among all
requests, but would have to be correctly installed and maintained.

In this case, since the heavy lifting is done by PostgreSQL, the impact in the overall system
performance is tiny and well worth the price to get a simpler to maintain and extend application.

1.3 Front-end features

1. Data filter by date interval, aggregated by either: State, LGA, Oil block, Flare site / cluster
identified by the method described in [Hod18], Company, Oil field, or Offshore/onshore areas.
See § 2.1 Filter

2. Interactive layered map view. See § 2.2 Map view
3. Detail view with graphs and trend lines, including the aggregate values and also separate graphs

for each aggregation field, for instance each state. See § 2.3 Detail view

1.4 Back-end features

1. Data storage and processing with PostgreSQL, described accurately in their website as “a powerful,
open source object-relational database system with over 30 years of active development that has
earned it a strong reputation for reliability, feature robustness, and performance”.

2. Automated merging of raw CSV data from VIIRS. See § 7.1 Importing VIIRS data
3. Simplified development of new HTTP end-points (queries) as detailed in § 6.2 New HTTP endpoints

with the PostgreSQL adaptor.

https://www.postgresql.org/
https://postgis.net
https://leafletjs.com/
https://www.chartjs.org/

User interface

The user interface is a web application. It has a filter bar at the top, a map view on the left side, and a
detail view with graphs on the right side. The design is based on mock-ups provided by Rory Hodgson
for SDN.

Figure 2.1: Filter (§ 2.1 Filter) at the top, map (§ 2.2 Map view) on the left, details (§ 2.3 Detail view)
on the right. The big graph top-right shows the aggregate for the selected areas, the smaller graphs
below show the evolution of each area.

Figure 2.2: Close-up of the area and date range filters.

Figure 2.3: Full-screen toggle at the top right corner.

5

6

2.1 Filter

Figure 2.4: Query/filter selectors, area class and date range.

The satellite measurments can be aggregaged according to different areas:

• state the states in Nigeria.

• lga Local Government Administrations in Nigeria, roughly analog to provinces in other countries.

• oil block the oil exploitation blocks granted to different companies by the Nigerian government.

• flare site clusters of detected flares. The detection position from the satellite is not perfectly
accurate and this clustering groups together detections that can reasonably assumed to belong to
a same flare location.

• company as a given company can hold several oil blocks, this aggregation groups together all
known sites operated by each company.

• oil field these are areas where oil/gas is found. Some fields span several oil blocks, and many oil
blocks contains several fields.

• onshore/offshore splits flare locations on land from those off the coast.

Date range selector

The date slider selects the month range.
Clicking anywhere on the line will move the closest segment extreme there, and click-and-dragging

will move the extreme closest to the button press point to the place where the button is released, very
similar to click-and-dragging that extreme except that you do not need to click exactly on it: any point
in the vecinity will do.

Figure 2.5: Date range selector: click or click-and-drag to move any of the range extremes.

Holding the Control key while clicking on the slider selects only that month.

7

2.2 Map view

Figure 2.6: Map view, with an information pop-up showing the properties of the oil block under the
cursor.

The shaded areas are those where flares were detected, and are the ones that can be selected/de-selected
by clicking on them.

At the bottom left there is a scale: it corresponds to the center of the map, but in Nigeria there is
very little distortion in the Mercator projection we use so it is a good approximation anywhere on the
map.

The layer selector at the top right allows hiding certain layers for clarity.
When moving the mouse cursor over the map, a blue box shows the properties of the area under it.

The information shown depends on the data available for that area in the database.

8

2.3 Detail view

Figure 2.7: The detail view.

It is divided in a top area for the aggregate
totals, and smaller panels below for each of
the selected areas.

A couple of buttons in the aggregate area
allow downloading the currently-selected
data as either JSON or CSV data that can
be loaded in other tools like spreadsheets
for inclusion in reports or further analysis.

The blue line is the trendline of the data.

Small graphs for each area

The individual graphs for selected areas are
half the width of the aggregate to clearly
distinguish them from the main aggregate
graph.

Clicking on one of those panels (any-
where, title or graph works the same) will
center and highlight it on the map.

The cross mark at the right of each title
will de-select it.

When first loading a dataset, there is a
button to select automatically all the areas
where flares were detected. This is not done
automatically because in some cases, for in-
stance when grouping by LGA, there are
many areas and it is more useful to start
from scratch.

It is particularly useful when the areas
are not easy to spot on the map at the initial
zoom level. For instance when looking at oil
fields, there are few with flares in them, and
they are quite small in area.

Server API

All the server API endpoints reply in JSON (MIME type application/json), and any error messages
include a list of valid parameters.

[

{"error": [

{"missing-parameters": ["area"]},

"No matching SQL query for HTTP parameters",

{"unknown-format": false},

{"parameters": {

"area": ["country", "state", "lga", "block"]

}}

]}

]

Figure 3.1: Example of an error response, indicating that there is an area parameter whose value must
be one of country, state, lga, or block.

3.1 Endpoints

feature-collection.php

fetch a GeoJSON feature collection from the goemetry objects in the database.

table= name of the table in PostgreSQL that contains the geometric features, for instance boundary,
states, lgas, blocks, company, location, oilfields, onshore_offshore, cluster_boundaries,
population, or clusters.

mscf.php

estimated monthly amounts of gas being burned for a geographical area, with fields name, mscf, and
month.

area= either country, state, lga, block, cluster, company, oilfield, or onshore_offshore.

9

http://geojson.org/

Installation

Just copy the “gft-2018” directory somewhere in the web application’s content directory, and copy
“api/conf/db.php.example” into “api/conf/db.php”. You need to have PostgreSQL v9.5 at least.

4.1 Database set-up

The database must have two users defined:

• gft with SELECT privileges on the tables.

• gftwrite with all privileges on the database, capable of creating table views and inserting data
when importing VIIRS measurements.

This separation is for security: the gft account only needs to read the data to serve it to the
front-end, while the gftwrite account is not reachable from the web and is only used by the CLI tools
that import VIIRS data and update the data views.

The password for the gft user must be put into “api/conf/db.php” (see § 5 Configuration), and
the password for gftwrite is given on the command line during maintenance as described in § 7.1
Importing VIIRS data and § 7.2 Updating the database.

gft2018=# grant SELECT on all tables in schema public to gft;

gft2018=# grant SELECT on all sequences in schema public to gft;

gft2018=# alter default privileges in schema public

grant SELECT on tables to gft;

gft2018=# alter default privileges in schema public

grant SELECT on sequences to gft;

gft2018=# grant all privileges on database "gft2018" to gftwrite;

gft2018=# grant all privileges on all tables

in schema public to gftwrite;

gft2018=# grant all privileges on all sequences

in schema public to gftwrite;

gft2018=# alter default privileges in schema public

grant all privileges on tables to gftwrite;

gft2018=# alter default privileges in schema public

grant all privileges on sequences to gftwrite;

Figure 4.1: Setting the user privileges in PostgreSQL: gft can only read, and gftwrite can create and
modify tables.

10

Configuration

The server can be configured in the files under “api/conf/”.

1. “api/conf/general.php” sets general options such as whether to display server error messages
to the user or only put them in the Apache web server log file.

It also defines utility functions to be used in other configuration files:

conf_set($name, $value) set this entry in the global configuration.

conf_get($name) get and entry from the global configuration.

2. “api/conf/db.php” tells how to access the PostgreSQL RDBMS.

dbconn_host= host machine where it is running.

dbconn_dbname= database name, because a RDBMS can store several databases.

dbconn_user= default user for read operations: this should be a user that is only allowed
to read data, not modify it. The scripts that need to write to the database override these
settings to log in as a user with write privileges. See § 4.1 Database set-up.

dbconn_password= the password for dbconn_user.

It defines the function dbconn_params() that combines those settings into the string needed by
pg_connect(...).

<?php

conf_set(’dbconn_host’, ’localhost’);

conf_set(’dbconn_dbname’, ’gft-database’);

conf_set(’dbconn_user’, ’gft-user’);

conf_set(’dbconn_password’, ’1234’);

function dbconn_params()

{

return

’host=’.conf_get(’dbconn_host’)

.’ dbname=’.conf_get(’dbconn_dbname’)

.’ user=’.conf_get(’dbconn_user’)

.’ password=’.conf_get(’dbconn_password’)

;

}

?>

11

Developing the server API

6.1 CORS settings

Cross-Origin Resource Sharing allows using this API from a front-end in a different server. There is a
small helper for handling CORS at “lib/cors.php”.

<?php require_once ’lib/cors.php’;
cors_allowed([’GET’ => ’*’]);
... ?>

Figure 6.1: Example of allowing GET requests from any website.

6.2 New HTTP endpoints with the PostgreSQL adaptor

To help build new end-points/queries with a minimum of boilerplate, there is an adaptor under
“get_json.php”.

It needs four defintions: parameters, sql_parameters, description_response, and sql_queries.
From that, it produces a valid JSON response served over HTTP that is ready to use by the web
front-end or other applications.

One example is “feature-collection.php” shown abbreviated in Figure 6.2. It provides the
different data map layers such as “States” and “Oil fields”, called “feature collections” in GeoJSON.

sql_queries contains the list of possible queries, each of them with three fields:

’params’: is a pattern to match the request parameters. This entry will be picked if each paramenter
mentioned here has the specified value.

’format’: is the format for the HTTP response.

If it is JSON, the response will be an array with one entry per data row, using the column names
as field names.

If NDJSON, the result will be Newline Delimited JSON, that is, instead of an array of objects, there
will be one line per object.

GeoJSON will produce a GeoJSON feature collection, with one feature per row. The table must
have a gid column with unique identifiers, and a geom column of a geometry type that can be
converted to GeoJSON using ST_AsGeoJSON() (that means a SFS 1.1 geometry type).

’query’: is the SQL query to be used if the request parameters match params.

12

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
http://ndjson.org/
https://postgis.net/docs/ST_AsGeoJSON.html

13

<?php ...
$parameters = [[’name’ => ’table’, ’default’ => null]];
$sql_parameters = [];

$sql_queries = [

[’params’ => [’table’ => ’states’],
’format’ => ’GeoJSON’,
’query’ => ’SELECT * FROM state_boundaries’

],
[’params’ => [’table’ => ’lgas’],
’format’ => ’GeoJSON’,
’query’ => ’SELECT * FROM lga_boundaries’

],
[’params’ => [’table’ => ’blocks’],
’format’ => ’GeoJSON’,
’query’ => ’SELECT id AS gid, block_name, status, type, total_sqkm, award_date,

basin, contract, rights, terrain, operator, wkb_geometry AS geom
FROM oil_blocks’

],
...
];

...

get_json_row($parameters, $sql_parameters, $description_response, $sql_queries);
?>

Figure 6.2: The most relevant parts of “feature-collection.php”. The actual SQL query to use is
picked according to its ’params’ entry: if the ’table’ HTTP parameter is ’states’ the first ’query’
will be used, and so forth.

Maintenance

This application is designed to require little maintenance, just refreshing the database regularly using
the VIIRS data import script (§ 7.1 Importing VIIRS data), and the update script (§ 7.2 Updating the
database) that rebuilds the data views used to speed things up.

None of those steps requires stopping the web server or restarting anything.

7.1 Importing VIIRS data

api/cli/import-viirs-data.php

The VIIRS data import tool can run while the server continues using the existing data.
The first line printed is either the minimum and maximum dates in the data as “Existing data

ranges from 2012-03-01 to 2018-11-28”, or if there are no records yet which is normally the case
the first time this script is run, the message “The table viirs_merged is empty.”.

Usage: import-viirs-data.php --user=<user> --password=<password>

--start=<start> [--end=<end>]

start: first day to import, in YYYY-MM-DD format, e.g. 2018-11-05.

The earliest valid date is 2012-03-01.

end: last day to import, format as start-date.

If not specified, yesterday´s date will be used.

Figure 7.1: Screenshot of usage message.

Data URLs

The URLs for the VIIRS data files have changed over time. The script will compute the correct URL
for each date, but this does not cover future changes which will need adjustments in the conditionals
at the beginning of the import() function. It will also deal with small changes in the data files from
different periods, which have had fields added over time.

14

15

root@postgis:~# php /var/www/html/api/cli/import-viirs-data.php --user=g

ftwrite --password=*** --start=2018-06-02 --end=2018-06-06

Existing data ranges from 2012-03-01 to 2018-06-02

Importing viirs_merged from:

https://data.ngdc.noaa.gov/instruments/remote-sensing/passive/spectromet

ers-radiometers/imaging/viirs/vnf/v30//VNF_npp_d20180602_noaa_v30-ez.csv

.gz

- started on 2018-12-14 11:06:10.

- finished on 2018-12-14 11:06:14.

230240 rows now, from 2012-03-01 to 2018-06-02

Importing viirs_merged from:

https://data.ngdc.noaa.gov/instruments/remote-sensing/passive/spectromet

ers-radiometers/imaging/viirs/vnf/v30//VNF_npp_d20180603_noaa_v30-ez.csv

.gz

- started on 2018-12-14 11:06:14.

- finished on 2018-12-14 11:06:17.

230331 rows now, from 2012-03-01 to 2018-06-03

Importing viirs_merged from:

https://data.ngdc.noaa.gov/instruments/remote-sensing/passive/spectromet

ers-radiometers/imaging/viirs/vnf/v30//VNF_npp_d20180604_noaa_v30-ez.csv

.gz

- started on 2018-12-14 11:06:17.

- finished on 2018-12-14 11:06:21.

230354 rows now, from 2012-03-01 to 2018-06-04

Importing viirs_merged from:

https://data.ngdc.noaa.gov/instruments/remote-sensing/passive/spectromet

ers-radiometers/imaging/viirs/vnf/v30//VNF_npp_d20180605_noaa_v30-ez.csv

.gz

- started on 2018-12-14 11:06:21.

- finished on 2018-12-14 11:06:24.

230464 rows now, from 2012-03-01 to 2018-06-05

Importing viirs_merged from:

https://data.ngdc.noaa.gov/instruments/remote-sensing/passive/spectromet

ers-radiometers/imaging/viirs/vnf/v30//VNF_npp_d20180606_noaa_v30-ez.csv

.gz

- started on 2018-12-14 11:06:24.

- finished on 2018-12-14 11:06:28.

230592 rows now, from 2012-03-01 to 2018-06-06

root@postgis:~#

Figure 7.2: A typical run of the VIIRS data import script.

16

7.2 Updating the database

api/cli/update-database.php

This re-builds the materialized views (cached computed data tables) that are used for serving
requests.

Usage: update-database.php --user=<user> --password=<password> [--table=

<table>] [--all]

Available tables: flare_clusters, flare_clusters_per_state, flare_cluste

rs_per_lga, flare_clusters_per_block, flare_clusters_per_company, flare_

clusters_per_oilfield, flare_clusters_per_onshore_offshore, geojson_stat

es

Figure 7.3: Screenshot of usage message.

--table= flare_clusters performs the SQL query provided by Rory Hodgson to identify flare
clusters from the raw VIIRS daily detections, and is based on his MSc Thesis [Hod18].

--table= flare_clusters_per_state is an aggregation by state of the flare locations identified in
flare_clusters.

--table= flare_clusters_per_lga is the same as above, aggregated by Local Government Admin-
istration (LGA).

--table= flare_clusters_per_block is the aggregation per oil block.

--table= flare_clusters_per_company aggregates flare locations per company as identified by
Rory Hodgson.

--table= flare_clusters_per_oilfield aggregates them per oil field.

--table= flare_clusters_per_onshore_offshore totalizes the flare clusters in two sets: over land
or at sea.

--table= geojson_states is a cached version of the states table already converted to JSON, to
avoid having to do the conversion for each page view.

https://www.postgresql.org/docs/current/rules-materializedviews.html

17

root@postgis:~# php /var/www/html/api/cli/update-database.php --user=gft

write --password=**** --all

Setting up default privileges.

Set default table privileges for user gft.

Set default sequence privileges for user gft.

Creating view flare_clusters if not already there.

View flare_clusters is ready, now updating, started on 2018-11-29 11:30:

47.

Updated view flare_clusters, finished on 2018-11-29 11:30:47.

Creating view flare_clusters_per_state if not already there.

View flare_clusters_per_state is ready, now updating, started on 2018-11

-29 11:30:47.

Updated view flare_clusters_per_state, finished on 2018-11-29 11:30:47.

Creating view flare_clusters_per_lga if not already there.

View flare_clusters_per_lga is ready, now updating, started on 2018-11-2

9 11:30:47.

Updated view flare_clusters_per_lga, finished on 2018-11-29 11:30:47.

Creating view flare_clusters_per_block if not already there.

View flare_clusters_per_block is ready, now updating, started on 2018-11

-29 11:30:47.

Updated view flare_clusters_per_block, finished on 2018-11-29 11:30:48.

Creating view flare_clusters_per_company if not already there.

View flare_clusters_per_company is ready, now updating, started on 2018-

11-29 11:30:48.

Updated view flare_clusters_per_company, finished on 2018-11-29 11:30:48

.

Creating view flare_clusters_per_oilfield if not already there.

View flare_clusters_per_oilfield is ready, now updating, started on 2018

-11-29 11:30:48.

Updated view flare_clusters_per_oilfield, finished on 2018-11-29 11:30:4

8.

Creating view flare_clusters_per_onshore_offshore if not already there.

View flare_clusters_per_onshore_offshore is ready, now updating, started

on 2018-11-29 11:30:48.

Updated view flare_clusters_per_onshore_offshore, finished on 2018-11-29

11:30:48.

Creating view geojson_states if not already there.

View geojson_states is ready, now updating, started on 2018-11-29 11:30:

48.

Updated view geojson_states, finished on 2018-11-29 11:30:48.

root@postgis:~#

Figure 7.4: Screenshot of database update process.

Bibliography

[ABW] Obinna C.D. Anejionu, Alan Blackburn, and Duncan Whyatt, Remote mapping
of gas flares in the niger delta with modis imagery, 33th EARSeL Symposium
(Rosa Lasaponara, Nicola Masini, and Marilisa Biscione, eds.), Available on-
line at http://www.earsel.org/symposia/2013-symposium-Matera/pdf_proceedings/

EARSeL-Symposium-2013_2_2_anejionu.pdf, pp. 59–68. 1

[EZHB13] Christopher Elvidge, Mikhail Zhizhin, Feng-Chi Hsu, and Kimberly Baugh, VIIRS nightfire:
Satellite pyrometry at night, Remote Sensing 5 (2013), no. 9, 4423–4449, available online
at https://doi.org/10.3390/rs5094423. 3

[Hod18] Rory Hodgson, Generating a scalable calibration equation that can be applied to viirs nightfire
(vnf) radiant heat calculations to estimate gas flaring volumes in nigeria, Master’s thesis,
Birkbeck College, University of London, 9 2018, Available online at https://docs.google.
com/document/d/1Oc0YM9CaTRnBenlo3dZrjfx1LPn3BDgzT_SHgBBn5qs/edit. 4, 16

18

http://www.earsel.org/symposia/2013-symposium-Matera/pdf_proceedings/EARSeL-Symposium-2013_2_2_anejionu.pdf
http://www.earsel.org/symposia/2013-symposium-Matera/pdf_proceedings/EARSeL-Symposium-2013_2_2_anejionu.pdf
https://doi.org/10.3390/rs5094423
https://docs.google.com/document/d/1Oc0YM9CaTRnBenlo3dZrjfx1LPn3BDgzT_SHgBBn5qs/edit
https://docs.google.com/document/d/1Oc0YM9CaTRnBenlo3dZrjfx1LPn3BDgzT_SHgBBn5qs/edit

	Contents
	Introduction
	Remote pyrometry, detecting fire from orbit
	2018 edition
	Front-end features
	Back-end features

	User interface
	Filter
	Map view
	Detail view

	Server API
	Endpoints

	Installation
	Database set-up

	Configuration
	Developing the server API
	CORS settings
	New HTTP endpoints with the PostgreSQL adaptor

	Maintenance
	Importing VIIRS data
	Updating the database

	Bibliography

